
Xilinx-Lava User Guide
2 Combinators and Placement
Tutorial 1 showed how a circuit can be composed using named wires. We show here
how circuits can be composed using combinators. Combinators are functions that allow
circuit blocks to be glued together without the need for the connecting wires to be
explicitly named. In addition to this, combinators can be used to provide information
about where circuit blocks are placed in the resulting implementation. This tutorial pro-
vides the steps used in composing and placing a 6-input lookup table (LUT) design
using combinators. A schematic for this circuit is shown in Figure 2.1.

Figure 2.1 Registered Lut6 implementation using multiplexers and 4-input ROMs.

The components in this circuit are particular to the Virtex architecture. The function
generators of the CLB are configured as rom16x1 components. They have the same
function as LUTs, but are not optimised automatically by the Xilinx implementation
tools in terms of their contents. This is advantageous in the context of this tutorial
because it allows us to observe the expected layout without any optimisations occuring.
The muxf5 and muxf6 are implemented as dedicated logic in the CLB. They provide
better performance and resource utilisation when combining the outputs from the func-
tion generators.

2.1 Composition Without Placement

The two basic ways to compose circuit blocks in Lava are to connect them in series and
to connect them in parallel. Lava provides the >=> combinator for series composition
and the par combinator for parallel composition. Series composition connects the out-

rom16x1 rom16x1

rom16x1
fd

rom16x1

muxf5 muxf5

muxf6

i[5]

o

clk

i[4]
i[0 to 3]
15

Composition Without Placement
put of one circuit block to the input of another. To compose the final multiplexer
(muxf6) in series with the flip-flop (fd), the following is written in Lava:

muxAndFd clk = muxf6 >=> fd clk

We can see the type of the function muxAndFd using lavai:

*Main> :i muxAndFd
-- muxAndFd is a variable, defined at Lut6.hs:35
muxAndFd :: Bit -> (Bit, (Bit, Bit)) -> Bit

The first Bit is the clock (clk) wire, (Bit, (Bit, Bit)) are the inputs to the multi-
plexer and the final Bit is the output of the flip-flop. The series composition will only
work if the types of the first blocks outputs and the second blocks inputs are the same.
In the case of the flip-flop, the clock wire is not required in the series composition and
so is provided as an explicitly name wire. In general, the wires that remain after partially
applying the arguments of the circuit block function, are the wires used in the series
composition.

Parallel composition using par combines the input and output types in a pair. To com-
pose the two rom16x1 blocks in parallel, the following is written in Lava:

romAndRom init0 init1 = rom16x1 init0 `par2` rom16x1 init1

The type of the composition is:

Int -> Int ->
((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit)) -> (Bit, Bit)

The two Int arguments are the initialisation values of the ROMs. Each rom takes four
wires and its type is a four element tuple. Therefore the input type of the parallel com-
position is a pair of four element tuples. The output of each ROM is a single wire so the
output type of the composition is a pair.

The parallel ROMs can now be composed in series with the multiplexer (muxf5). The
select input of the multiplexer is not wired up during the series composition. The input
type of the multiplexer is a pair with another pair as the second element. We cannot use
partial application to combine the correct wires this time. So for this reason, the prelude
provides the combinators fsT and snD to help navigate through pairs when doing series
composition. fsT combines a block in parallel with a wire, and snD combines a wire in
parallel with a block. We want to connect the outputs of the ROMs to the second ele-
ment of the multiplexer input pair. The connecting outputs and inputs are pairs them-
selves. This composition is written in Lava as follows:

romsAndMux init0 init1 = snD(romAndRom init0 init1) >=> muxf5

We can now compose the entire circuit by applying the same technique:

snD(romsAndMux init0 init1 `par2` romsAndMux init2 init3)
>=> muxAndFd clk

This composition is shown in Figure 2.2.
16

Composition Without Placement
Figure 2.2 Composition of the Lut6 design using series and parallel combinators.

All that remains now is to connect the ROMs together and tidy up the inputs. The above
expression has the type:

Int -> Int -> Int -> Int -> Bit ->
(Bit, ((Bit, ((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit))),
 (Bit, ((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit)))))
 -> Bit

The simplest way to handle all the wires is to creating a custom wiring function and
compose it in series with the expression. A suitable wiring function is:

wires (a,b,c,d,e,f) =
(f, ((e, ((a,b,c,d), (a,b,c,d))), (e, ((a,b,c,d), (a,b,c,d)))))

rom16x1

fd

rom16x1

muxf5

muxf6

rom16x1

rom16x1

muxf5

romsAndMux

romsAndMux
>=>

Bi
t)

)

(B
it

,
(B

it
,

par2snD
17

Composition with Placement
Although this means reverting back to composition by named wires at the last hurdle,
the effort of glueing the blocks together has been reduced. Alternatively, it is possible to
define new combinators specific to a problem, or to define and compose wiring blocks.
This can help to reduce the amount of wiring and the number of combinators needed to
describe a circuit. The complete source text of this circuit is given below.

-- function types

muxAndFd :: Bit -> (Bit, (Bit, Bit)) -> Bit
romAndRom :: Int -> Int -> ((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit)) -> (Bit, Bit)
romsAndMux :: Int -> Int -> (Bit, ((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit))) -> Bit
complete :: Int -> Int -> Int -> Int -> Bit
 -> (Bit, ((Bit, ((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit))),
 (Bit, ((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit))))) -> Bit
wired :: (Int, Int, Int, Int) -> Bit -> (Bit, Bit, Bit, Bit, Bit, Bit) -> Bit

-- functions

muxAndFd clk = muxf6 >=> fd clk
romAndRom init0 init1 = rom16x1 init0 `par2` rom16x1 init1
romsAndMux init0 init1 = snD(romAndRom init0 init1) >=> muxf5

complete init0 init1 init2 init3 clk =
 snD(romsAndMux init0 init1 `par2` romsAndMux init2 init3) >=> muxAndFd clk

wired (init0, init1, init2, init3) clk =
 wires >=> complete init0 init1 init2 init3 clk
 where wires (a,b,c,d,e,f) =
 (f, ((e, ((a,b,c,d), (a,b,c,d))), (e, ((a,b,c,d), (a,b,c,d)))))

Note: it might seem like a lot of effort to provide all the types of the functions, in prac-
tice this can mostly be done automatically using lavai.

2.2 Composition with Placement

Placement is the process of locating the circuit blocks in the final implementation. In the
previous example, placement information was not supplied in the Lava source code. In
order to implement this design, placement must be provided by an external tool. In the
case of Xilinx FPGAs, the tools used to do this would most likely be the Xilinx imple-
mentation tools. These provide facilities for both manual and automatic placement of
circuit blocks. By manually specifying placement, it is sometimes possible to achieve an
implementation that has a higher performance, or more efficient resource utilisation,
than an automatically placed implementation.

For this reason, Lava has combinators that can be used to specify the relative location of
the circuit blocks being composed. The placement information is tagged onto each cir-
cuit block adding an RLOC (relative location) constraint in the output netlist. This gives
the relative location of the circuit block in the grid of the FPGA configurable logic
blocks (CLBs).
18

Composition with Placement
Figure 2.3 shows a possible mapping of the 6-input LUT circuit blocks to a Virtex CLB.
The CLB contains two slices, each of which contain a set of programmable logic blocks.
These include two LUTs (which the rom16x1 maps to), a muxf5, a muxf6 and a reg-
ister. The Virtex RLOC constraint specifies the CLB row, column and slice to place a
circuit block. To place the circuit blocks that map to the LUTs, they are RLOCed to the
same slice and the Xilinx implementation tools allocate them to the physical resources.

Figure 2.3 Layout of the Lut6 design within a Virtex CLB. The external connections are not shown.

Lava provides combinators that place circuit blocks beside each other, below each other
or in the same location. The ability to compose blocks in the same location allows
blocks to be mapped to the different resources within a single slice.

To compose the 6-input LUT with the above placement, we start again by composing
the final multiplexer (muxf6) is series with the flip-flip (fd). To specify that they are
placed in the same slice, we use the series combinator >|>. In a similar way to before,
this is written in Lava as:

muxAndFdPl clk = muxf6 >|> fd clk

The rom16x1 blocks can be composed in each slice using the vpar2 combinator. The
vpar2 combinator takes two circuit blocks and places the first below the second. Lava
treats the two LUTs in a CLB as seperate locations, although the resulting RLOCs for
two LUT circuit blocks composed vertically will be the same. The facility to compose
LUTs in this way is provided so that circuits that use columns of LUTs, such as arith-
metic, can be described easily. The Xilinx implementation tools actually decide how the
circuit blocks will be assigned to the LUTs since the RLOC contraints do not provide
this information. For this composition, par2 is replaced with vpar2:

romAndRomPl init0 init1 = rom16x1 init0 `vpar2` rom16x1 init1

It is straightforward now to compose the muxf5 block with the rom16x1 blocks in
each slice:

rom16x1

rom16x1

muxf5

muxf6

fd

rom16x1

rom16x1

muxf5

muxf6

fd

slice 1 slice 0
19

Exercise
romsAndMuxPl init0 init1 = snD(romAndRomPl init0 init1) >|> muxf5

To compose the muxAndFdPl and romAndRomPl blocks together is more tricky.
This is because the blocks in slice 0 must be composed to share the same location. If
they are composed as before with romAndRomPl blocks in parallel and the muxAnd-
FdPl block composed using >|>, then the muxf6 and register would be placed in slice
1. This is because >|> places blocks in the same location with their origins aligned in
the lower left. To do this we need to compose the block in slice 0 in series using >|>
and then compose these in series horiztonally with the slice 1 blocks. We can the follow-
ing rule to break the parallel composition of the rom16x1 blocks:

A hpar2 B = fst A >-> snd B

If A = B = romsAndMuxPl, and C = muxAndFdPl, then the form of the compo-
sition we are looking for is (ignoring initial values and the clock):

snD(A hpar2 B) >|> C

Substituting for the LHS of the above rule:

snD(fsT A >-> snD B) >|> C

Distributing the snD and bracketing the terms we want to place together:

snD(fsT A) >-> (snD(snD B) >|> C)

Which gives the Lava description for the placed circuit:

romsAndMuxesPl init0 init1 init2 init3 clk
= snD(fsT(romsAndMuxPl init0 init1)) >->
 (snD(snD(romsAndMuxPl init2 init3)) >|> muxAndFdPl clk)

If the 6-input LUT is described without the placement combinators, the Xilinx imple-
mentation tools will come up with a similar placement themselves (probably with the
slices reversed, which makes no difference in terms of the Virtex architecture). So why
go to the trouble of placing such a small circuit? The advantage is, that this can now be
used to build bigger, fully placed circuits. This composition might seem complicated for
the size of the circuit, but this is because it is irregular and is complicated by the need
for placing circuit blocks on top of each other. Lavas real strength lies in the ease in
which regular circuits can be composed and placed. The facilities that Lava provides for
doing this are introduced in the next tutuorial.

2.3 Exercise

Provide a Lava description of the 6-input LUT circuit placed using combinators for the
Virtex II architecture.
20

	2 Combinators and Placement
	Figure 2.1 Registered Lut6 implementation using multiplexers and 4-input ROMs.

	2.1 Composition Without Placement
	Figure 2.2 Composition of the Lut6 design using series and parallel combinators.

	2.2 Composition with Placement
	Figure 2.3 Layout of the Lut6 design within a Virtex CLB. The external connections are not shown.

	2.3 Exercise

