
Xilinx-Lava User Guide
3 Placement with Overlay
Tutorial 2 showed how combinators can be used to place circuit blocks beside and
below each other. This tutorial shows how combinators can be used to place blocks so
that they are overlayed on to the same resources. Overlay can be used to achieve effi-
cient implementations. To demonstrate this, the steps in describing a registered 6-input
lookup table (LUT) design are given. In the case of Virtex, using overlay can result in a
reduction in resource usage and an increase in performance as it allows designs that use
multiple slice resources to be described.

Figure 3.1 Registered Lut6 implementation using multiplexers and 4-input ROMs.

A schematic for the registered 6-input lookup table design is shown in Figure 3.1. This
circuit works by addressing four 4-input lookup tables with the least-significant input
bits and then selecting between their outputs with the most-significant input bits. The
output is registered to provide pipelining when the 6-input lookup table is used to form
larger functions.

The components in this circuit are particular to the Virtex architecture. The function
generators of the CLB are configured as rom16x1 components. They have the same
function as LUTs, but are not optimised automatically by the Xilinx implementation
tools in terms of their contents. This is advantageous in the context of this tutorial
because it allows us to observe the expected layout without any optimisations occuring.
The muxf5 and muxf6 blocks are multiplexors that are implemented as dedicated logic
in the CLB. They provide better performance and resource utilisation than multiplexors
implemented in LUTs, when combining the outputs from the LUTs.

rom16x1 rom16x1

rom16x1
fd

rom16x1

muxf5 muxf5

muxf6

i[5]

o

clk

i[4]
i[0 to 3]
21

Composition Without Placement
The composition and placement of this design is shown in two parts. The first shows
how to compose the design without providing any placement. The second shows how
this can be used to derive a description that provides placement with overlay. This is
then compared to a LUT only implementation that does not use placement or overlay to
show the advantages of this approach.

3.1 Composition Without Placement

The first step is to compose the final multiplexer (muxf6) in series with the flip-flop
(fd). This is written in Lava as follows:

muxf6Reg clk = muxf6 >=> fd clk

Next we compose the two rom16x1 blocks in parallel and connect their inputs together
as follows:

romsPar init0 init1 =
 fork2 >=> rom16x1 init0 `par2` rom16x1 init1

The type of this composition is:

Int -> Int -> (Bit, Bit, Bit, Bit) -> (Bit, Bit)

The two Int arguments are the initialisation values of the ROMs. Each rom takes four
wires and its type is a four element tuple. The fork2 splits its input into a pair, in this
case giving the type:

((Bit, Bit, Bit, Bit), (Bit, Bit, Bit, Bit))

which is the correct type of the parallel composition of the ROMs. The output of each
ROM is a single wire so the output type of the composition is a pair. To simplify these
types, we can use a type synonym:

type Lut4Addr = (Bit, Bit, Bit, Bit)

The type of romsPar now becomes:

romsPar :: Int -> Int -> Lut4Addr -> (Bit, Bit)

The parallel ROMs can now be composed in series with the multiplexer (muxf5). The
select input of the multiplexer is not wired up during the series composition. The input
type of the multiplexer is a pair with another pair as the second element. We cannot use
partial application to combine the correct wires this time.

For this reason, the prelude provides the combinators fsT and snD to help navigate
through pairs when doing series composition. fsT combines a block in parallel with a
wire, and snD combines a wire in parallel with a block. We want to connect the outputs
of the ROMs to the second element of the multiplexer input pair. The connecting out-
puts and inputs are pairs themselves. This composition is written in Lava as follows:
22

Composition Without Placement
snD(romsPar init0 init1) >=> muxf5

It helps to tidy up the wiring at this stage. We have effectively composed a 5-input LUT
and it is clearer if it takes a 5-element tuple where the MSB controls the select input of
the multiplexer. We can do this easily by writing a custom wiring function and compos-
ing it in series with the main composition:

lut5 init0 init1 =
 wires >=> snD(romsPar init0 init1) >=> muxf5
 where
 wires (a, b, c, d, e) = (e, (a, b, c, d))

We can now compose the entire circuit by applying the same techniques. This complete
composition is shown in Figure 3.2.

Figure 3.2 Composition of the Lut6 design using series and parallel combinators.

rom16x1

fd

rom16x1

muxf5

muxf6

rom16x1

rom16x1

muxf5

lut5

lut5
>=>

B
i
t
)

)

(
B
i
t
,

(
B
i
t
,

par2snD
23

Composition Using the Overlay Combinators
The complete Lava code for this design is as follows:

type Lut4Addr = (Bit, Bit, Bit, Bit)
type Lut5Addr = (Bit, Bit, Bit, Bit, Bit)
type Lut6Addr = (Bit, Bit, Bit, Bit, Bit, Bit)

muxf6Reg :: Bit -> (Bit, (Bit, Bit)) -> Bit
muxf6Reg clk = muxf6 >=> fd clk

romsPar :: Int -> Int -> Lut4Addr -> (Bit, Bit)
romsPar init0 init1 =
 fork2 >=> rom16x1 init0 `par2` rom16x1 init1

lut5 :: Int -> Int -> Lut5Addr -> Bit
lut5 init0 init1 =
 wires >=> snD(romsPar init0 init1) >=> muxf5
 where
 wires (a, b, c, d, e) = (e, (a, b, c, d))

lut6Reg :: Int -> Int -> Int -> Int -> Bit -> Lut6Addr -> Bit
lut6Reg init0 init1 init2 init3 clk =
 wires >=> snD(fork2 >=> lut5 init0 init1 `par2` lut5 init2 init3)
 >=> muxf6Reg clk
 where
 wires (a, b, c, d, e, f) = (f, (a, b, c, d, e))

Note that type synonyms have been defined for both the 5-input LUT and 6-input LUT
functions to simplify the type signature declarations.

3.2 Composition Using the Overlay Combinators

In addition to combinators that place circuit blocks beside and below each other, Lava
provides combinators to place circuit blocks in the same location. This allows blocks to
be mapped to the different resources within a single slice. Figure 3.3 shows a possible
mapping of the 6-input LUT circuit blocks to a Virtex CLB. The CLB contains two
slices, each of which contain a set of programmable logic blocks. These include two
LUTs (which the rom16x1 maps to), a muxf5, a muxf6 and a register. The Virtex
RLOC constraint specifies the CLB row, column and slice to place a circuit block. To
24

Composition Using the Overlay Combinators
place the circuit blocks that map to the LUTs, they are RLOCed to the same slice and
the Xilinx implementation tools allocate them to the physical resources.

Figure 3.3 Layout of the Lut6 design within a Virtex CLB. The external connections are not shown.

To compose the 6-input LUT with the above placement, we start again by composing
the final multiplexer (muxf6) is series with the flip-flip (fd). To specify that they are
placed in the same slice, we use the >|> series combinator. In a similar way to before,
this is written in Lava as:

muxf6RegPl clk = muxf6 >|> fd clk

The rom16x1 blocks can be composed in each slice as before, replacing the par2 com-
binator with vpar2:

romsParPl init0 init1 =
 fork2 >=> rom16x1 init0 `vpar2` rom16x1 init1

The muxf5 block are composed with the rom16x1 blocks in each slice by again using
the >|> series combinator:

lut5Pl init0 init1 =
 wires >=> snD(romsParPl init0 init1) >|> muxf5
 where
 wires (a, b, c, d, e) = (e, (a, b, c, d))

To compose the muxf6RegPl and lut5Pl blocks together is more tricky. This is
because the blocks in slice 0 must be composed to share the same location. If they are
composed as before with lut5Pl blocks in parallel and the muxf6RegPl block com-
posed using >|>, then the muxf6 and register would be placed in slice 1. This is because
>|> places blocks in the same location with their origins aligned in the lower left. To do
this we need to compose the block in slice 0 in series using >|> and then compose these
in series horiztonally with the slice 1 blocks. We can the following rule to break the par-
allel composition of the lut5Pl blocks:

rom16x1

rom16x1

muxf5

muxf6

fd

rom16x1

rom16x1

muxf5

muxf6

fd

slice 1 slice 0
25

Composition Using the Overlay Combinators
A hpar2 B = fst A >-> snd B

If A = B = lut5Pl, C = muxf6RegPl and F = Fork2, then the form of the com-
position we are looking for is (ignoring initial values and the clock):

snD(F >=> A hpar2 B) >|> C

Substituting for the LHS of the above rule:

snD(F >=> fsT A >-> snD B) >|> C

Distributing the snD and bracketing the terms we want to place together:

snD(F) >=> snD(fsT A) >-> (snD(snD B) >|> C)

Substituting A, B, C and F completes the Lava description for the placed circuit:

muxf6RegPl :: Bit -> (Bit, (Bit, Bit)) -> Bit
muxf6RegPl clk = muxf6 >|> fd clk

romsParPl :: Int -> Int -> Lut4Addr -> (Bit, Bit)
romsParPl init0 init1 =
 fork2 >=> rom16x1 init0 `vpar2` rom16x1 init1

lut5Pl :: Int -> Int -> Lut5Addr -> Bit
lut5Pl init0 init1 =
 wires >=> snD(romsParPl init0 init1) >|> muxf5
 where
 wires (a, b, c, d, e) = (e, (a, b, c, d))

lut6RegPl :: Int -> Int -> Int -> Int -> Bit -> Lut6Addr -> Bit
lut6RegPl init0 init1 init2 init3 clk =
 wires >=> snD(fork2) >=>
 (snD(fsT(lut5Pl init0 init1)) >-> (snD(snD(lut5Pl init2 init3)) >|> muxf6RegPl clk))
 where
 wires (a, b, c, d, e, f) = (f, (a, b, c, d, e))

If the 6-input LUT is described without the placement combinators, the Xilinx imple-
mentation tools will come up with a similar placement themselves (probably with the
slices reversed, which makes no difference in terms of the Virtex architecture). So why
go to the trouble of placing such a small circuit? The advantage is, that this can now be
used to build bigger, fully placed circuits. This composition might seem complicated for
the size of the circuit, but this is because it is irregular and is complicated by the need
for placing circuit blocks on top of each other.
26

Comparison with a LUT Only Design
3.3 Comparison with a LUT Only Design

TO DO:

1) Show how to Implement the designs.

2) Show floorplans.

A 6-input lookup table can also be created using LUTs only. The following Lava code
describes a LUT only version with no placement composed using named wires:

lut6RegNet :: Int -> Int -> Int -> Int -> Bit -> Lut6Addr -> Bit
lut6RegNet init0 init1 init2 init3 clk (i0, i1, i2, i3, i4, i5) =
 muxRegOut
 where
 lutOut0 = rom16x1 init0 (i0, i1, i2, i3)
 lutOut1 = rom16x1 init1 (i0, i1, i2, i3)
 lutOut2 = rom16x1 init2 (i0, i1, i2, i3)
 lutOut3 = rom16x1 init3 (i0, i1, i2, i3)
 muxOut0 = muxBit i4 (lutOut0, lutOut1)
 muxOut1 = muxBit i4 (lutOut2, lutOut3)
 muxRegOut = fd clk (muxBit i5 (muxOut0,muxOut1))

Table 1 shows the delay and resource usage of the design in Section 3.2 and the LUT
only design above. By using overlay placement and the dedicated resources of the Vir-
tex architecture, it is possible to double the speed of the design and halve the number of
slices used. It would be possible to describe the design in Section 3.2 using named
wires, but again, it is not possible to then place this design when composing larger
designs.

3.4 Exercises

1. Provide a Lava description of the 6-input LUT circuit placed using combinators for
the Virtex II architecture.

2. Determine the critical path delay of the Virtex II design.

TABLE 1. Delay and resource usage of 6-input lookup table designs.

Design Critical
Path Delay
(ns)

Number of
slices

muxfX and
overlay

3.9 2

LUTs only 8.1 4
27

Exercises
28

	3 Placement with Overlay
	Figure 3.1 Registered Lut6 implementation using multiplexers and 4-input ROMs.

	3.1 Composition Without Placement
	Figure 3.2 Composition of the Lut6 design using series and parallel combinators.

	3.2 Composition Using the Overlay Combinators
	Figure 3.3 Layout of the Lut6 design within a Virtex CLB. The external connections are not shown.

	3.3 Comparison with a LUT Only Design
	TABLE 1. Delay and resource usage of 6-input lookup table designs.

	3.4 Exercises

