
Xilinx-Lava User Guide

35

5 Regular 4-Sided Composition

This tutorial shows how regular circuits with 4-sided elements can be described in Lava.
The type of regular circuits that are discussed in this tutorial are those where data flows
in two or more directions, including directions perpendicular to each other. Two classes
of circuits that have these data flow characterics are systolic arrays and arithmetic oper-
ators. We will demonstrate the features of Lava for composing regular circuits with 4-
sided elements using the example of a constant adder/subtractor design. Before describ-
ing this design, we first introduce the model of 4-sided elements used by the standard
Lava combinators. Because 4-sided elements are connected together in a 2-dimensional
array, they are referred to here as 4-sided tiles.

5.1 4-Sided Tiles

Lava includes a set of combinators that interpret the inputs and outputs of circuit blocks
according to a two-dimensional model. The relationship between this two-dimensional
model and the input and output types of the circuit is shown in Figure 5.1. A circuit is
considered a four sided tile if it has a type which takes a two element tuple as its input
and returns a two element tuple.

Figure 5.1 Mapping of inputs and outputs to the sides of a 4-sided circuit element. The type of the 4-
sided tile is (a,b) -> (c,d).

A four sided tile is divided into the input signal and output signal portions by the gray
diagonal line. The inputs are represented by a tuple (a, b) in which the a signal is con-
nected to the bottom of the tile and the b signal is connected to the left of the tile. These
signals can be of any type and so can consist of more than one wire. The outputs are rep-
resented by a tuple (c, d) in which the c signal is connected to the right hand side of the
tile and the d signal is connected to the top of the tile. This model is not applicable to all

b

a

c

d

4-Sided Tiles

36

circuits with 4-sided tiles, but Lava is not limited to this model. A user can create any
model they wish to suit their applications by creating their own combinators.

To combine and place two 4-sided tiles vertically, Lava provides the below combina-
tor. Figure 5.2 shows the result of the composition:

r `below` s

Figure 5.2 Connecting two 4-sided tiles together with the below operator.

The circuit r has the type (a,b) -> (c, x) and the circuit s has the type (x,e) -> (f, g) and
the composite circuit has the type (a, (b, e)) -> ((c, f), g) where x is the type of the inter-
mediate signal that r and s communicate along. To combine two 4-sided tiles horizon-
tally, Lava provides the beside combinator. The composition

r `beside` s

places s to the right of r. Lava provides parametrized combinators to replicate and com-
pose four sided tiles in row and columns. The row combinator replicates and composes
a tile horizontally from left to right and takes a parameter that determines number of
times a tile is to be replicated. The col combinator replicates and composes a tile verti-
cally from bottom to top. The resulting type of applying the col combinator to the tile
in Figure 5.1 is (a, [b]) -> ([c], d) and the resulting type of applying the row
combinator is ([a], b) -> (c, [d]). The row and col combinators can be
used together to form a 2-dimensional array of 4-sided tiles. The use of these operators
is demonstrated in the next section by the constant adder/subtractor design.

e

a

f

b c

g

s

x

r

Constant Adder/Subtractor Design

37

5.2 Constant Adder/Subtractor Design

This section demonstrates the use of 4-sided tile combinators by providing the steps
required to describe a constant adder/subtractor design in Lava. Figure 5.3 shows a con-
stant adder/subtractor implementation that uses circuit blocks specific to the Xilinx Vir-
tex architecture. The repeating element is a 4-sided tile that implements a 1-bit constant
adder/subtractor. This adds or subtract one of four constant bits to the input bit a. This is
combined using a ripple-carry architecture to implement an n-bit adder/subtractor. The
input s selects between the add mode when low, and the subtract mode when high. The
constants are selected by the signals m0 and m1. The main steps required to describe
this circuit are to firstly describe the repeating element, and then secondly compose
them whilst distributing the inputs and outputs accordingly.

Figure 5.3 Constant adder/subtractor design. The repeating element is a 4-sided tile that is
composed in a column. The Virtex dedicated carry chain components are used to
optimise the performance and resource usage of the design. The input s selects between
the add mode when low, and the subtract mode when high. Four constants are stored in
the LUTs; they are selected using the signals m0 and m1.

lut4

xorcy
muxcy

m0 m1

a

s

sum

lut4

xorcy
muxcy

a
sum

lut4

xorcy
muxcy

a

0

1

n

0

1

nsum

cout

Constant Adder/Subtractor Design

38

The muxcy and xorcy circuit blocks are dedicated resources provided in the Virtex slice.
They are connected in the configuration shown in Figure 5.3 and provide an efficient
way to build ripple-carry arithmetic circuits. To construct a full adder in a single slice,
the LUT is configured as an XOR gate. We wish to provide some additional functional-
ity within the LUT; a subtract mode and 4 constants. Figure 5.4 shows a way in which
this can be achieved.

Figure 5.4 Constant adder/subtractor LUT. The constants c0-c3 are encoded in the table by partially
applying them to the LUT initialisation function.

The final XOR provides the ‘add’ functionality, the preceding XOR inverts the constant
operand when in subtract mode and the multiplexors select between the four constants.
The contents of the 4-input LUT can be provided, as before, using an initialising func-
tion. The constants can be then be encoded by partial application. The gray area denotes
the part of the circuit that is transformed to a constant 2-input function by partial appli-
cation. The initialising function is written in Lava as follows:

addSubConst4Func c0 c1 c2 c3 a s m0 m1 =
 (((muxFn m1 (muxFn m0 c0 c1) (muxFn m0 c2 c3)) == s) == a)

It is used to initialise the LUT, partial applying the constants c0, c1, c2 and c3, as fol-
lows:

lut4 (addSubConst4Func c0 c1 c2 c3)

The type of the constants c0, c1, c2 and c3 is Bool.

0

1
0

1
0

1

m0

m1

a

s

o

c1

c0

c3

c2

lut4

Exercises

39

The repeating tile fits within one half of a Virtex slice and so can composed using
named wires as follows:

oneBitAddSubConst4 :: Bit -> Bit -> Bit ->
 (Bit, (Bit, Bool, Bool, Bool, Bool)) ->
 (Bit, Bit)

oneBitAddSubConst4 s m0 m1 (cin, (a, c0, c1, c2, c3))
 = (sum, cout)
 where
 part_sum = lut4 (addSubConst4Func c0 c1 c2 c3) (a, s, m0, m1)
 sum = xorcy (part_sum, cin)
 cout = muxcy (part_sum, (a, cin))

Since the inputs c, m0 and m1 fan-out across each of the tiles then they are not included
in the 4-sided composition. They therefore are partially applied to give a 2-element
tuple, the correct type for 4-sided composition. The carry input cin is the lower input,
and the operand input a and the constants c0-c3 are the left inputs. To compose the
tiles into a column of size n we use the col combinator. Since the type of the left input
is (Bit, Bit, Bit, Bit, Bit) the col combinator results in the type (Bit,
[(Bit, Bit, Bit, Bit, Bit)]) -> ([Bit], Bit).

It is convient to represent each of the left multi-bit inputs as lists. In this case, we need a
function to give the type [(Bit, Bit, Bit, Bit, Bit)]. As for the example in last
tutorial we can use a zip function. We need a five element zip function and since it is not
in the standard library, we need to define it ourselves:

zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)]
zip5 [] [] [] [] [] = []
zip5 (a:as) (b:bs) (c:cs) (d:ds) (e:es) =
 (a, b, c, d, e) : zip5 as bs cs ds es

Now, the composition of the column can be completed as follows:

addSubConst4 :: Int -> Bit -> Bit ->
 [Bool] -> [Bool] -> [Bool] -> [Bool] ->
 (Bit, [Bit]) -> ([Bit], Bit)

addSubConst4 n m0 m1 c0 c1 c2 c3 (s, a)
 = col n (oneBitAddSubConst4 s m0 m1) (s, (zip5 a c0 c1 c2 c3))

5.3 Exercises

1. Describe the circuit oneBitAddSubConst4 using combinators.

2. Using oneBitAddSubConst4 and the row combinator, design a circuit to imple-
ment the function:

sum a k0s0 k1s1 … km 1– sm 1–+ + + +=

where ki c0 c1 c2 c3, , ,{ } and si 1 1–,{ }= =

Exercises

40

